Abstract
AbstractAlzheimer's disease is an important public concern with rising prevalence across the globe. While many therapeutic approaches for Alzheimer's disease have been developed, there are currently no validated disease-modifying treatments. Thus, in order to develop novel treatment strategies, there is a significant need to progress our understanding of the pathogenesis of Alzheimer's disease. Several large genome-wide association studies and whole genome and exome sequencing studies have identified novel genes associated with late-onset Alzheimer's disease. Interestingly, many of the genes are associated with inflammation and the immune system, including complement receptor 1, clusterin, CD33, EPH receptor A1, membrane-spanning 4-domains subfamily A, ATP-binding cassette sub-family A member 7, major histocompatibility complex class II, inositol polyphosphate-5-phosphatase, myocyte enhancer factor 2C, and triggering receptor expressed on myeloid cells 2. The pathogenetic contributions of immune reaction and neuroinflammation in Alzheimer's disease have been regarded largely as part of amyloid cascade hypothesis. The neurotoxic amyloid-β (Aβ) induces activation of immune cells, such as microglia, astrocytes, perivascular macrophages and lymphocytes and decreased capability of clearing Aβ by immune system and chronic inflammation caused by activated immune cells aggravate neuronal damage and eventually Alzheimer's disease. But the precise mechanism and hereditary impact on such process is largely unknown. The current findings in genetic studies suggest that the immunological mechanisms of Alzheimer's disease may extend beyond passive reaction of Aβ, including the development of Alzheimer's disease such as time of onset and rate of progression. In this article, we aimed to review the mechanisms of immune reaction and neuroinflammation in Alzheimer's disease, with an emphasis on the function of genes known to be associated with a risk of Alzheimer's disease in terms of neuroinflammation and immune function.
Highlights
Alzheimer’s disease is the major form of dementia, and is considered as important global concern
Many of the genes are associated with inflammation and the immune system, including complement receptor 1, clusterin, CD33, EPH receptor A1, membrane-spanning 4-domains subfamily A, ATP-binding cassette sub-family A member 7, major histocompatibility complex class II, inositol polyphosphate-5-phosphatase, myocyte enhancer factor 2C, and triggering receptor expressed on myeloid cells 2
Neuroinflammation and immune reactions affect the pathogenesis of psychiatric disorders such as dementia, depression, and schizophrenia [161,162,163]
Summary
Alzheimer’s disease is the major form of dementia, and is considered as important global concern. Alzheimer’s disease together with other forms of dementia is the 4th leading cause of years lost due to disability (YLD) in high income countries at 3.7 million YLD, representing 5.4% of the total YLD, which is higher than that of chronic obstructive pulmonary disease, diabetes mellitus, and cancer [1]. As both life expectancy and the size of the elderly population continue to increase, the prevalence of dementia is increasing. Alzheimer’s disease can be divided into two groups based on genetic aspects, namely, “early-
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.