Abstract

BackgroundCoronavirus papain-like proteases (PLpros) play a crucial role in virus replication and the evasion of the host immune response. Infectious bronchitis virus (IBV) encodes a proteolytically defective remnant of PL1pro and an active PL2pro. However, the function of PL1pro in IBV remains largely unknown. This study aims to explore the effect of PL1pro on virus replication and underlying mechanisms.ResultsThe recombinant viruses rIBV-ΔPL1pro and rIBV-ΔPL1pro-N were obtained using reverse genetic techniques through the deletion of the IBV PL1pro domain and the N-terminal conserved sequence of PL1pro (PL1pro-N). We observed significantly lower replication of rIBV-ΔPL1pro and rIBV-ΔPL1pro-N than wild-type IBV. Further investigation revealed that the lack of PL1pro-N in IBV decreased virus resistance to interferon (IFN) while also inducing host immune response by enhancing the production of IFN-β and activating the downstream STAT1 signaling pathway of IFNs. In addition, the overexpression of PL1pro-N significantly suppressed type I IFN response by down-regulating the expressions of genes in the IFN pathway.ConclusionsOur data demonstrated that IBV PL1pro plays a crucial role in IBV replication and the suppression of host innate immune responses, suggesting that IBV PL1pro could serve as a promising molecular target for antiviral therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call