Abstract

The intracellular calcium chelator 1,2-bis(2-aminophenoxy)ethane N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA AM) used at low concentrations (1.0 and 2.5 μM) was shown to block the priming effect of weak combined static (42 μT) and low-frequency collinear alternating (1.0, 4.4, and 16.5 Hz; 0.86 μT) magnetic fields. This blockage was inferred from a greater increase in chemiluminescence observed for a mouse neutrophil suspension exposed to combined magnetic fields in response to the bacterial peptide N-formyl–Met–Leu–Phe added in the presence of luminol. Similar results were obtained for the effect of BAPTA AM on luminol-dependent chemiluminescence of whole blood. The priming effect of weak combined magnetic fields on the respiratory burst in neutrophils did not depend on the presence of extracellular Ca2+ and was not affected by the hydroxyl radical scavenger dimethyl sulfoxide used at 0.025–1.0 mM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call