Abstract

Abstract—The method for determining time dependences of the entropy-production density, force, and heat flux are presented. This method is based on processing the experimental thermogram at electrostatic levitation during spontaneous cooling of a solid molybdenum sphere. The results of numerical simulation of cooling a spherical sample from melting temperature T m ≈ 2880 K showed that the isothermal approximation for the temperature field in the sphere is valid, which made it possible to pass to the entropy density and calculate its production density. It is shown that heat flux in the time-dependent thermal problem under consideration determines the time dependence of the entropy production (it tends to the minimum zero value while approaching ambient temperature) and, therefore, is responsible for the validity of the extremum principle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.