Abstract

A series of measurements have been performed on the time dependences of the intensities of helium, hydrogen, and deuterium emission lines from the corresponding laser-induced helium plasma at atmospheric pressure for two different He flow rates. The prolonged Hα and Hβ emissions along with their constant intensity ratio over a relatively extended period indicate the need to provide an alternative excitation mechanism other than the well-known thermal excitation process in a hot plasma. This additional excitation mechanism is also related to the metastable excited state of a He atom as indicated by the similar characteristics of the observed time dependence of the emission intensities. The enhanced intensity and lifetime of He emission at a high He flow rate was explained in terms of the collision-induced increase in the number of He atoms excited to above the 2 S10 metastable state, which was also responsible for the delayed excitation of H and D atoms via an energy transfer mechanism involving a Penning-like chemi-ionization process. Finally, the benefits of He-assisted delayed excitation of H and D atoms and the aforementioned enhanced intensity and lifetime at a high He flow rate were demonstrated by the achievement of clearly resolved Hα and Dα emission lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call