Abstract

The influence of dispersion procedure and nanofiller geometry on thermal and electrical properties of graphene nanoplatelet (GNP) based composites has been investigated. A theoretical model, based on the contacts between adjacent nanoparticles, has been proposed aiming to connect thermal and electrical properties. It has been observed that GNP overlapping (type I) induces a decrease on thermal conductivity. Its effect on electrical conductivity is more complex and depends on the areas of overlap and in-plane contacts (type II). A higher type I area in comparison to type II implies an increase of electrical conductivity with overlapping whereas the opposite effect is found when type II area is higher than type I. The predicted results of the theoretical model fitted experimental measurements at different GNP contents and three roll milling processing conditions, giving a better overview of the influence of GNP geometry and interactions on electrical and thermal properties of nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call