Abstract

The NMDA receptor (NMDAR) hypofunction hypothesis of schizophrenia is supported by multiple lines of evidence. Notably, administration of the NMDAR antagonist, ketamine, to healthy human subjects has psychotogenic action, producing both positive and negative symptoms associated with schizophrenia. NMDARs have multiple subtypes, but the subtypes through which ketamine produces its psychotogenic effects are not known. Here we address this question using quantitative data that characterize ketamine's ability to block different NMDAR subtypes. Our calculations indicate that, at a concentration that has psychotogenic action in humans, ketamine blocks a substantial fraction of GluN2C subunit-containing receptors but has less effect on GluN2A-, GluN2B-, and GluN2D-containing receptors. Thus, GluN2C-containing receptors may have preferential involvement in psychotic states produced by ketamine. A separate line of experiments also points to a special role for GluN2C. That work demonstrates the ability of NMDAR antagonists to mimic the elevation in the awake-state δ frequency EEG power that occurs in schizophrenia. Physiological experiments in rodents show that NMDAR antagonists generate δ oscillations by their action on the GluN2C-containing NMDARs that are prevalent in the thalamus. Optogenetic experiments suggest that such oscillations could contribute to symptoms of schizophrenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.