Abstract
Patients with cancer have an increased risk of venous thromboembolism (VTE). Guidelines suggest to use risk assessment tools to guide decisions about thromboprophylaxis, but current tools have modest discriminatory ability. Genetic information from the germline or tumor has the potential to improve VTE prediction. Here, we provide a clinical overview of the current role of genetics in cancer-associated VTE. Germline mutations, such as factor V Leiden and prothrombin G20210A, are associated with a 2- to 2.5-fold increased VTE risk in patients with cancer. Tumor-specific somatic mutations also contribute to VTE risk, such as ALK rearrangements increasing the risk in nonsmall cell lung cancer and IDH1 mutations decreasing the risk in gliomas. Other somatic mutations associated with VTE independent of tumor type include KRAS, STK11, MET, KEAP1, CTNNB1, and CDKN2B. Incorporating data on germline or somatic mutations in risk scores improves discriminatory ability compared with the Khorana score. Specific germline and somatic mutations are associated with an increased VTE risk in patients with cancer and potentially improve performance of clinical risk scores. The increasing and widespread use of genetic testing in cancer care provides an opportunity for further development of prediction models incorporating genetic predictors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have