Abstract

Abstract The influence of small defect clusters on irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels has been examined. A CP-304 SS alloy was irradiated with 3.2 MeV protons to 1.0 dpa at 360°C and then annealed for 45 min. to 1 h at temperatures ranging from 400–600°C. Dislocation microstructure was analyzed using both bright field and dark field techniques and cracking susceptibility was measured in an oxygenated water environment. Intergranular cracking was mitigated following annealing at 500°C/45 min. while only the smallest dislocation loops had been removed. Analysis of the slip step bands on the surface of deformed samples indicates that deformation mode may be important in determining cracking susceptibility. Low-temperature irradiation (< 75°C) was also used to create a high population of small defects without radiation-induced segregation. Samples were then annealed at 350°C for 8 or 15 min. to grow the dislocation loop microstructure, resulting in an irradiated hardness similar to the 1.0 dpa at 360°C case. No segregation was measured in the asirradiated specimens. The change in hardness resulting from 0.3 dpa at 75°C was 73.8 kg/mm2, greater than that for 1.0 dpa at 360°C. Following annealing at 350°C for 8 min., the change in hardness was reduced to 60.8 kg/mm2, similar to 1.0 dpa at 360°C (65.3 kg/mm2). Samples were also strained to 29.6 % strain in an oxygenated water environment at 288°C. No cracking was observed on any specimen. The small defect damage may have been annealed during the constant extension rate test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.