Abstract

Considerable experience with plant equipment performance in nuclear power stations has indicated that the principal factors limiting the life of BWRs and PWRs are materials related. Specifically, for LWRs it is known that these materials issues generally include parameters related to stress corrosion cracking, corrosion fatigue, wear and radiation embrittlement. Not only do these parameters affect and limit the actual useful design life of plant components but also affect the plant's operating availability. In all these cases, the elimination or control of one or more of these critical parameters should improve the plants availability and significantly extend the useful service life. In the present paper, research performed to address the intergranular stress corrosion cracking (IGSCC) area is described. Specific emphasis is placed on Type 304 stainless steel which has suffered IGSCC in piping in the heat-affected-zone (HAZs) adjacent to the welds in the BWR primary system. Research has developed and qualified a number of techniques which address the three necessary conditions for IGSCC in BWRs: (1) sensitized microstructure, i.e., chromium depletion at the grain boundaries during welding; (2) over yield tensile stress; and (3) oxygenated (200 ppb) high temperature (288 Another potential life-limiting IGSCC phenomenon for certain components, irradiation assisted stress corrosion cracking (IASCC) of stainless steel exposed to a high neutron flux, is also discussed. Unlike the IGSCC, IASCC results in intergranular cracking of annealed material at low stress. Fortunately, preliminary research has indicated that some of the techniques utilized for IGSCC control in piping as well as new controlled impurity level stainless steel alloys may reduce the future potential IASCC concern to an insignificant level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call