Abstract

The production and rejoining of single-strand breaks (SSB) in chromosomal DNA and extrachromosomal ribosomal DNA (rDNA) were investigated after sublethal doses of ..gamma.. radiation to exponentially growing Tetrahymena. Hydrogen-3-labeled total nuclear DNA isolated from either control or irradiated cells was heat denatured and electrophoresed in agarose gels containing formaldehyde. Ribosomal DNA was identified by hybridization to (/sup 32/P)rRNA after transferring the DNA from the gels to nitrocellulose strips. It was found that (a) approximately 0.68 SSB is produced in each strand of rDNA exposed to 40 krad; (b) greater than 80% of SSB were rejoined within the first 20 min after irradiation in both chromosomal and rDNA; and (c) the rejoining process in both chromosomal and rDNA proceeded in the presence of inhibitors of protein synthesis, RNA synthesis, or oxidative metabolism. While the majority of SSB induced by 40 krad is rejoined within 20 min after irradiation, the resumption of rRNA synthesis does not occur until 30 min thereafter; it is concluded that the restoration of the normal size of the rDNA template is probably necessary but not sufficient for the resumption of rRNA synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.