Abstract

The rejoining of single-strand breaks (SSBs) induced in plasmid DNA in the presence of 10 mmol dm(-3) Tris scavenger by aluminum K (Al(K)) ultrasoft X rays has been compared with that for SSBs induced by gamma radiation. The Al(K) ultrasoft X rays interact to produce low-energy secondary electrons, which are thought to be the main contributors to the formation of complex damage by low-LET radiations. The rejoining of radiation-induced SSBs was investigated using human whole cell extracts. The efficiency of rejoining of SSBs induced by Al(K) ultrasoft X rays is less than that observed for gamma-ray-induced SSBs. From the similarity of the extent of rejoining of SSBs induced by gamma rays under aerobic and anaerobic conditions, the chemical nature of the stand break termini does not significantly influence SSB rejoining. A simple nick induced in plasmid DNA by gpII protein is rejoined rapidly compared with the slower rejoining processes for radiation-induced SSBs. Therefore, ligation is not rate-determining in processing radiation-induced SSBs. This study provides further evidence that nonrejoining of radiation-induced SSBs reflects the complexity of DNA damage. From comparison of the extent of rejoining of SSBs induced by different radiations, it is inferred that double-strand breaks represent only a minor component of the overall yield of complex damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.