Abstract
The photon energy dependence of long-range charge separation is studied for two prototypical polymer:fullerene systems. The internal quantum efficiency (IQE) of PCDTBT:PC61BM is experimentally shown to be independent of the excitation energy. In contrast, for TQ1:PC71BM the IQE is strongly energy-dependent for excitation energies close to charge transfer (CT) electroluminescence peak maximum while it becomes energy-independent at higher excitation energies. Kinetic Monte Carlo simulations reproduce the experimental IQE and reveal that the photon energy-dependence of the IQE is governed by charge delocalization. Efficient long-range separation at excitation energies corresponding to the CT electroluminescence peak maximum or lower requires an initial separation of the hole-electron pair by ∼4-5 nm, whereas delocalization is less important for charge separation at higher photon energies. Our modeling results suggest that a phenomenological reciprocity between CT electroluminescence and external quantum efficiency does not necessarily prove that commonly employed reciprocity relations between these spectra are valid from a fundamental perspective.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.