Abstract

Since the effect of clouds on the earth's radiation balance is often estimated as the difference of net radiative fluxes at the top of the atmosphere between all situations and monthly averaged clear sky situations of the same regions, a reliable identification of clear sky is important for the study of cloud radiative effects. The Scanner for Radiation Balance (ScaRaB) radiometer on board the Russian Meteor-3/7 satellite provided earth radiation budget observations from March 1994 to February 1995 with two ERBE-Re broad-band longwave and shortwave channels. Two narrow-band channels, in the infrared atmospheric window and in the visible band, have been added to the ScaRaB instrument to improve the cloud scene identification. The International Satellite Cloud Climatology Project (ISCCP) method for cloud detection and determination of cloud and surface properties uses the same narrow-band channels as ScaRaB, but is employed to a collection of measurements at a better spatial resolution of about 5 km. By applying the original ISCCP algorithms to the ScaRaB data, the clear sky frequency is about 5% lower than the one over quasi-simultaneous original ISCCP data, an indication that the ISCCP cloud detection is quite stable. However, one would expect an about 10 to 20% smaller clear sky occurrence over the larger ScaRaB pixels. Adapting the ISCCP algorithms to the reduced spatial resolution of 60 km and to the different time sampling of the ScaRaB data leads therefore to a reduction of a residual cloud contamination. A sensitivity study with time-space collocated ScaRaB and original ISCCP data at a spatial resolution of 1deg longitude x 1deg latitude shows that the effect of clear sky identification method plays a higher role on the clear sky frequency and therefore on the statistics than on the zonal mean values of the clear sky fluxes. Nevertheless, the zonal outgoing longwave fluxes corresponding to ERBE clear sky are in general about 2 to 10 W/sq m higher than those obtained from the ScaRaB adapted ISCCP clear sky identifications. The latter are close to (about 1 W/sq m higher) fluxes corresponding to clear sky regions from original ISCCP data, whereas ScaRaB clear sky LW fluxes obtained with the original ISCCP identification lie about 1 to 2 W/sq m below. Especially in the tropics where water vapor abundance is high, the ERBE clear sky LW fluxes seem to be systematically overestimated by about 4 W/sq m, and SW fluxes are lower by about 5 to 10 W/sq m. However, the uncertainty in the analysis of monthly mean zonal cloud radiative effects is also produced by the low frequency of clear sky occurrence, illustrated when averaging over pixels or even over regions of 4deg longitude x 5deg latitude, corresponding to the spatial resolution of General Circulation Models. The systematic bias in the clear sky fluxes is not reflected in the zonal cloud radiative effects, because the clear sky regions selected by the different algorithms can occur in different geographic regions with different cloud properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.