Abstract
Excessive environmental exposure to manganese (Mn) has been linked to cognitive impairments, circular RNAs (circRNAs) have been recognized for their roles in epigenetic regulation in various biological processes, including neurological pathogenesis. Previous studies found that ferroptosis, an iron ion-dependent programmed cell death, may be involved in cognitive impairments. However, specific mechanisms underlying the relationship among circRNA, ferroptosis, and neurotoxicity of Mn are not well-understood. In the current study, RNA sequencing was performed to profile RNA expression in Neuro-2a (N2a) cells that were treated with 300 μM Mn. The potential molecular mechanisms of circHmbox1(3,4) in Mn-induced cognitive impairments were investigated via various experiments, such as Western blot and intracerebroventricular injection in mice. We observed a significant decrease in the expression of circHmbox1(3,4) both in vitro and in vivo following Mn treatment. The results of Y maze test and Morris water maze test demonstrated an improvement in learning and memory abilities following circHmbox1(3,4) overexpression in Mn treated mice. Mn treatment may reduce circHmbox1(3,4) biogenesis through lowered expression of E2F1/QKI. Inhibiting circHmbox1(3,4) expression led to GPX4 protein degradation through protein ligation and ubiquitination. Overall, the current study showed that Mn exposure-induced cognitive dysfunction may be mediated through ferroptosis regulated by circHmbox1(3,4).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.