Abstract
Yuanzhi Powder (YZP), a classical Chinese medicine formula, is good at tonifying heart-Qi and improving cognitive ability. YZP has been reported to show therapeutic effect on alleviating the symptoms of Alzheimer's disease (AD). This study was conducted to observe the effects of YZP on improving the cognitive abilities of SAMP8 mice, and explore the involved mechanisms on inhibiting the excessive accumulation of phosphorylated tau. Thirty SAMP8 mice were randomly divided into five groups: AD group, AD+DO group, AD+YZP group, AD+LAC group and AD+LAC+YZP group. Age-matched SAMR1 mice were served as CTL group. AD+LAC group and AD+LAC+YZP group received 1μg Lactacystin solution via intra-cerebroventricular injection. All mice (except the CTL group and AD+LAC group) were intragastrically administrated for 8 consecutive weeks. Then, the Morris Water Maze (MWM) test was conducted for evaluation of learning and memory abilities. The pathological changes of hippocampal CA1 were observed by Hematoxylin & eosin (H&E) staining. The expression of 26S proteasome in the hippocampus was measured by Western Blot (WB) and immunohistochemistry (IHC). The expressions of total tau (Tau5) and hyperphosphorylated tau (pS199, pT231 and pS396) were detected by WB. The aggregation of hyperphosphorylated tau and the binding ability of tau protein to microtubules were evaluated respectively by immunostaining and Thioflavin-S staining and double-label immunofluorescence. SAMP8 mice showed serious cognitive impairment in behavioral tests. However, treatment of YZP significantly ameliorated the cognitive deficits of SAMP8 mice. The H&E staining suggested that YZP could protect against neuronal loss in SAMP8 mice. The IHC and WB results showed that YZP increases 26S proteasome expression in SAMP8 mice and 26S proteasome expression was effectively inhibited by Lactacystin. Meanwhile, The WB results demonstrated that YZP can inhibit the expression of hyperphosphorylated tau (pT231, pS396 and pS199). Furthermore, the immunostaining and Thioflavin-S staining and double-label immunofluorescence results indicated that YZP attenuates the excessive aggregation of hyperphosphorylated tau and enhances the binding ability of tau to stabilize microtubules in SAMP8 mice. YZP could enhance cognitive performance and learning of AD, ameliorate tau pathology and significantly improve the binding ability of tau to microtubules, based potentially on inhibiting the excessive aggregation of hyperphosphorylated tau via the 26Sproteasome pathway but not necessarily the only one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.