Abstract

Simple SummaryBaculoviruses (BV) infect several lepidopteran pests of economic importance, such as the beet armyworm Spodoptera exigua. The joint use of microbiological and macrobiological strategies may improve the efficacy of control. Laboratory bioassays were developed to evaluate the interactions between two BVs: the multiple nucleopolyhedroviruses of S. exigua (SeMNPV) and Autographa californica (AcMNPV), and the predator Chrysoperla carnea. The excretion products of the predator’s larvae (drops) and adults (meconia) were microscopically examined after the ingestion of BV-infected S. exigua larvae. For both types of excreta and BVs, viral occlusion bodies (OBs) (resistance forms) were observed. These OBs were infective to healthy S. exigua larvae when applied in water suspension and in direct deposition. The virulence of meconia was higher in suspensions (higher viral load), while larval drops were more virulent in direct application due to their liquid nature and their easiness of consumption. The fitness of C. carnea was slightly affected by the consumption of both BV-infected prey. No preference was shown between healthy and BV-infected S. exigua, and both were preferred vs. the aphid Macrosiphum euphorbiae. Our findings present C. carnea, and particularly its larvae, as a promissory candidate for BV dispersion in the field.Baculoviruses (BV) are highly effective against lepidopteran pests of economic importance such as Spodoptera exigua. The combined use of entomopathogens and macrobiological control agents requires the study of their relationships. Laboratory bioassays were developed to evaluate the interactions between the multiple nucleopolyhedroviruses of S. exigua (SeMNPV) and Autographa californica (AcMNPV), and the predator Chrysoperla carnea. The microscopic examination of predator’s excreta (larval drops and meconia) after the ingestion of BV-infected S. exigua revealed the presence of viral occlusion bodies (OBs). The reinfection of S. exigua larvae with BVs-contaminated excreta by using OBs water suspensions or by direct application both yielded high mortality values but different speed-of-kill results. Meconia killed before in suspensions due to their higher viral load and larval excretion drops did so in direct application due to their liquid nature and their easiness of consumption. The prey-mediated ingestion of SeMNPV and AcMNPV triggered slight effects in C. carnea, which were probably derived from the food nutritional quality. Chrysoperla carnea larvae did not discriminate between healthy and BV-infected S. exigua, while a preference was shown for S. exigua (healthy or infected) vs. Macrosiphum euphorbiae. Our findings present C. carnea, and particularly its larvae, as a promissory candidate for BV dispersion in the field.

Highlights

  • IntroductionThe family Baculoviridae comprises a large number of pathogenic viruses

  • Amongst insect pathogens, the family Baculoviridae comprises a large number of pathogenic viruses

  • This study examines the presence and activity of the occlusion bodies (OBs) in the larval and adult excretion products of the predator C. carnea when used as prey for Spodoptera exigua Hübner (Lepidoptera: Noctuidae) larvae that are infected by two alphabaculoviruses (the multiple nucleopolyhedroviruses of S. exigua (SeMNPV) and Autographa californica (AcMNPV))

Read more

Summary

Introduction

The family Baculoviridae comprises a large number of pathogenic viruses. Baculoviruses (BV) are important agents in the demographic regulation of a few hundred insect species, including some of the most economically important lepidopteran pests [1,2,3]. BV-based insecticides are highly effective for the control of a growing number of lepidopteran crop pests. In contrast to chemical pesticides, BV act as ecological entities that have the potential to infect, multiply, spread (both horizontally and vertically), and persist on plants and soil [4]. Amongst the dissemination strategies of BV, the horizontal transmission by the release of occlusion bodies (OBs) from infected corpses represents the main spreading path [1,5]. Predators, which are more mobile than herbivorous caterpillars, may contribute to the dispersal of BV because they excrete viable viral

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call