Abstract
This research examines the role of bio-activator, papaya latex in the synthesis of nanoporous carbon fibre made of the coal of coconut shell with aluminum oxide. The porous carbon was generated from coal activated by the papaya latex at the temperature of for 4 h. The high energy milling (HEM) process up to 600 thousand cycles was applied to the porous carbon added with a precursor of aluminum oxide. The size and morphology of the particle are analyzed using SEM and TEM while the molecular group and the particle crystallization are analyzed with FTIR and XRD. The results show that papaya latex plays an effective role in breaking down the oxygen atoms in carbonyl group on the surface of carbon particle and in aluminum oxide. The oxygen breakdown creates pores in carbon particle and active site on the aluminum oxide. When the HEM is applied, the porous carbon particle breaks into fullerene-like nanoparticle whose yield is high and spontaneously connects the aluminum oxide as intercalation of particle whose structure turns into dimer (bucky-ball) in the form of carbon nanofibre.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances in Natural Sciences: Nanoscience and Nanotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.