Abstract
T-2 toxin is one of the mycotoxins widely distributed in human food and animal feed. Our recent work has shown that microglial activation may contribute to T-2 toxin-induced neurotoxicity. However, the molecular mechanisms involved need to be further clarified. To address this, we employed high-throughput transcriptome sequencing and found altered B cell translocation gene 2 (BTG2) expression levels in microglia following T-2 toxin treatment. It has been shown that altered BTG2 expression is involved in a range of neurological pathologies, but whether it’s involved in the regulation of microglial activation is unclear. The aim of this study was to investigate the role of BTG2 in T-2 toxin-induced microglial activation. The results of animal experiments showed that T-2 toxin caused neurobehavioral disorders and promoted the expression of microglial BTG2 and pro-inflammatory activation of microglia in hippocampus and cortical, while microglial inhibitor minocycline inhibited these changes. The results of in vitro experiments showed that T-2 toxin enhanced BTG2 expression and pro-inflammatory microglial activation, and inhibited BTG2 expression weakened T-2 toxin-induced microglial activation. Moreover, T-2 toxin activated PI3K/AKT and its downstream NF-κB signaling pathway, which could be reversed after knock-down of BTG2 expression. Meanwhile, the PI3K inhibitor LY294002 also blocked this process. Therefore, BTG2 may be involved in T-2 toxin's ability to cause microglial activation through PI3K/AKT/NF-κB pathway.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have