Abstract

This paper reports studies to elucidate the potential relationships between porosity and surface functionality of biochar and soil water retention characteristics. The biochars studied were produced from pine wood (PW), hybrid poplar wood (HP), and pine bark (PB) at temperatures of 350°C and 600°C. The resulting materials were then oxidized under air at 250°C to generate oxygenated functional groups on the surface. All biochar were thoroughly characterized (surface and bulk properties) and their hydrological properties measured in blends with Quincy sand. We prepared 39 microcosms for this study to examine the effect of biochar functionalities and porosity on the hydro-physical properties of Quincy sand. Each biochar was thoroughly mixed with the soil at 20gkg−1. The field capacity, wilting point, and total available soil moisture of the bio-char/Quincy sand mixtures were measured for both dry and wet ranges. The soil water potentials and soil water contents were fitted using the model of van Genuchten. Our results indicated that the amount of oxygenated functional groups on the surface of biochars clearly differentiated the biochars in terms of hydrophilicity, with the oxidized biochars being superior, followed by the low-temperature biochars, while the high temperature biochars possessed lowest hydrophilicity. As a result, oxidized biochars exhibited better wettability compared to unoxidized biochars, regardless their feedstock source. Significant correlation occurred between the total acidic functional groups on biochar surface and water contents at different matric potentials. Over a wide range of soil water potentials, oxidized biochar-soil mixtures held more water than the unoxidized biochar-soil mixtures except in the region between −0.1 and −5kPa of ψ, which is near saturation. Soil water contents at different matric potentials were significantly inter-correlated (P<0.01) and correlated with bulk densities of biochar-amended soil samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.