Abstract

PurposeAlthough the coordination between stomatal closure and aboveground hydraulics has extensively been studied, our understanding of the impact of belowground hydraulics on stomatal regulation remains incomplete. Here, we investigated whether and how the water use of maize (Zea mays L.) varied under hydraulically contrasting soil textures. Our hypothesis is that a textural-specific drop in the hydraulic conductivity is associated with a distinct decrease in transpiration during soil drying.MethodsMaize plants were grown in contrasting soil textures (sand, sandy loam, loam) and exposed to soil drying. We measured the relationships between transpiration rate, soil water content as well as soil and leaf water potential. We used a soil-plant hydraulic model to reproduce the experimental observations and infer the hydraulic conductance of the soil-plant system during soil drying.ResultsWe observed the impact of soil texture on plant response to soil drying in various relationships. The soil water potentials at which transpiration decreased were more than one order of magnitude more negative in loam than in sand. The soil-plant conductance decreased not only abruptly but also at less negative soil water potentials in sand than in sandy loam or loam. Stomata closed at less negative leaf water potentials in sand than in loam. The model predictions matched well the experimental observations.ConclusionThe results elucidated that the critical soil water content and potential at which plants close stomata depends on the soil texture. These findings support our plea to include soil properties for understanding and predicting stomatal regulation during soil drying.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call