Abstract
A micro-plot field experiment was conducted in loamy soil naturally infested with Meloidogyne spp. to assess the potential of bio-agents namely bio-arc (Bacillus megaterium), nemastrol (a mixture of active ingredients), humisun (humic acid), and dried sweet basil callus to suppress nematodes’ population and induce resistance in sugar beet. Results indicated that integration of two or more components of such bio-agents gave better results in sugar beet growth parameters than did single ones. Hence, nemastrol and humisun in concomitant with bio-arc, sweet basil callus, and oxamyl (half recommended dose) induced significant (P ≤ 0.05) and maximum improvement in total plant fresh weight and shoot dry weight. Similar trend was also noticed in root diameter and number of leaves of sugar beet infected with Meloidogyne spp. Additionally, the greatest suppression in nematodes’ population (95.7%), root galling (83.0%), and number of egg masses (100%) was also sustained at the soil amended with nemastrol + humisun + bio-arc + sweet basil callus + oxamyl since incorporation of such organic materials into soil might enhance B. megaterium activity that initiates antibiotics towards nematode population. However, single application of dried sweet basil callus showed better performance than did the dried leaves in terms of female fecundity and total nematodes’ population. Thin-layer chromatography (TLC) and nuclear magnetic resonance (NMR) indicated the presence of higher content of triterpenoides that belong to three groups, i.e., lupane, ursane, and oleanane, in dried sweet basil callus compared to native dried leaves powder. Concomitant treatment with nemastrol + humisun + bio-arc + sweet basil callus + oxamyl exhihited significantly increased in sucrose (17.1%), total sugar solids (21.8%), and purity (79.0%). The activities of both peroxidase (PO) and polyphenol oxidase (PPO) showed detectable fluctuations at the end of the experiment compared to untreated plants.
Highlights
Root-knot nematodes (RKNs) Meloidogyne spp. are worldwide plant pathogens playing a detectable role in limiting the productivity of economic agriculture crops in temperate regions
Application of bio-arc (B. megaterium), nemastrol, humisun, dried sweet basil callus, and oxamyl singly or concomitantly in soil naturally infested with Meloidogyne spp. revealed that integrated of two or more components gave better results in sugar beet growth parameters than did single ones (Table 1)
Similar trend was noticed with root diameter and number of leaves of sugar-beet infected with Meloidogyne spp
Summary
Root-knot nematodes (RKNs) Meloidogyne spp. are worldwide plant pathogens playing a detectable role in limiting the productivity of economic agriculture crops in temperate regions. RKN, Meloidogyne incognita (Kofoid & White) Chitwood, is among the most important nematode species in sugar beet fields (Korayem 2006) causing damage to the epidermis, cortex, and stele regions which leads to giant cells and galls formation on fibrous and lateral roots that. Many researchers have investigated the antifungal and antimicrobial activities of certain plant callus extracts (Shariff et al 2006), but little attention has been given to their use in nematode management (Rocha et al 2004; Osman et al 2008; Nour El Deen 2008; Nour El-Deen and Darwish 2011). The present work was carried out in order to study the impact of certain bio-agents as resistance inducers singly or concomitantly on Meloidogyne spp. infecting sugar beet under field conditions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.