Abstract

Glutathione transferase (GST) is a phase II detoxifying enzyme that plays a protective mechanism against oxidizing substances and toxic contaminants. Among these contaminants, heavy metals and polycyclic and halogenated aromatic hydrocarbons (PHAHs) have been shown to exert their toxic effects through the modulation of detoxifying enzymes, including the GSTs. Recently, we showed that heavy metals particularly Hg 2+, Pb 2+, and Cu 2+ modulate the expression of phase II detoxifying enzymes such as NAD(P)H:quinone oxidoreductase 1 and Gsta1 in a concentration- and time-dependent manner. However, the effect of heavy metals and their potential interactions with aryl hydrocarbon receptor (AhR) ligands, PHAHs, on total Gst activity is still unknown. In the current study, we have investigated the effects of Hg 2+, Pb 2+, and Cu 2+ in the absence and presence of four AhR ligands on the total Gst activity and reactive oxygen species (ROS) production in wild-type and AhR-deficient Hepa 1c1c7 cells. Our results showed that Hg 2+ and Cu 2+, but not Pb 2+, significantly induced Gst activity in wild-type cells, whereas all metals induced the Gst activity in AhR-deficient cells. The induction of Gst activity by heavy metals was strongly correlated with an increase in the ROS production in wild-type, but not in AhR-deficient cells. Co-administration of heavy metals with AhR ligands differentially modulated Gst activity, in that co-exposure to Hg 2+ plus AhR ligands could be beneficial in protecting against cytotoxicity as demonstrated by the increase in Gst activity with a proportional decrease in ROS production. Whereas co-exposure to Cu 2+ plus AhR ligands was more toxic in that a decrease in Gst activity and an increase in oxidative stress of the cell were observed. We concluded that heavy metals differentially modulate the Gst activity through oxidative stress- and AhR-mediated mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.