Abstract
(3-Aminopropyl)triethoxysilane (APTES) silane possesses one terminal amine group and three ethoxy groups extending from each silicon atom, acting as a crucial interface between organic and inorganic materials. In this study, after APTES was deposited on the aluminum alloy AA2024-T3 as a primer for an optional top coating with polystyrene (PS), its role with regard to stability as a protection layer and interaction with the topcoat were studied via combinatorial experimentation. The aluminum alloy samples primed with APTES under various durations of concentrated vapor deposition (20, 40, or 60 min) with an optional post heat treatment and/or PS topcoat were comparatively characterized via electrochemical impedance spectroscopy (EIS) and surface energy. The samples top-coated with PS on an APTES layer primed for 40 min with a post heat treatment revealed excellent performance regarding corrosion impedance. A primed APTES surface with higher surface energy accounted for this higher corrosion impedance. Based on the SEM images and the surface energy calculated from the measured contact angles on the APTES-primed surfaces, four mechanisms are suggested to explain that the good protection performance of the APTES/PS coating system can be attributed to the enhanced wettability of PS on the cured APTES primer with higher surface energy. The results also suggest that, in the early stages of exposure to the corrosion solution, a thinner APTES primer (deposited for 20 min) enhances protection against corrosion, which can be attributed to the hydrolytic stability and hydrolyzation/condensation of the soaked APTES and the dissolution of the naturally formed aluminum oxide pre-existing in the bare samples. An APTES primer subjected to additional heat treatment will increase the impedance of the coating system significantly. APTES, and silanes, in general, used as adherent agents or surface modifiers, have a wide range of potential applications in micro devices, as projected in the Discussion section.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.