Abstract
The adsorption behavior and mechanism of ibuprofen (IBP) on BiOBr microspheres were investigated for revealing the role of adsorption in BiOBr-based photocatalysis under visible light irradiation. Parameters such as initial concentration of IBP, catalyst dosage, solution pH value, cations and anions that affect the adsorption and photocatalytic efficiency of IBP were studied. We observed that approximately 80% of the IBP removal rate contributed from BiOBr adsorption in photocatalysis process. This suggests that the removal rate of IBP by BiOBr is highly adsorptivity dependent, with higher removal rate at higher adsorption capacity. We believe that the anion exchange between Br and dissociated IBP followed by formation of Bi–O bond on the surface of BiOBr microspheres is the main acting force during the IBP adsorption, which was further proved by XPS and FT-IR analysis. Furthermore, the TOC removal rate difference between adsorption and photocatalysis was only 11%, which indicated that most of the removal rate contribution was from adsorption. Therefore, the BiOBr adsorption property should be preferentially considered when discussing its photocatalytic mechanism. Our current work is expected to offer new insight into BiOBr-based photocatalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.