Abstract
Cell transport is governed by the interaction of fluid dynamic forces and biochemical factors such as adhesion receptor expression and concentration. Although the effect of endothelial receptor density is well understood, it is not clear how the spacing and local spatial distribution of receptors affect cell adhesion in three-dimensional microvessels. To elucidate the effect of vessel shape on cell trajectory and the arrangement of endothelial receptors on cell adhesion, we employed a three-dimensional deformable cell model that incorporates microscale interactions between the cell and the endothelium. Computational cellular adhesion models are systematically altered to assess the influence of receptor spacing. We demonstrate that the patterns of receptors on the vessel walls are a key factor guiding cell movement. In straight microvessels, we show a relationship between cell velocity and the spatial distribution of adhesive endothelial receptors, with larger receptor patches producing lower translational velocities. The joint effect of the complex vessel topology seen in microvessel shapes such as curved and bifurcated vessels when compared to straight tubes is explored with results which showed the spatial distribution of receptors affecting cell trajectory. Our findings here represent demonstration of the previously undescribed relationship between receptor pattern and geometry that guides cellular movement in complex microenvironments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.