Abstract

Extensive monocyte recruitment is an early phenomenon associated with the development of atherosclerotic lesions, suggesting an active role for the involvement of adhesion receptors expressed by endothelial cells. In this study we describe the contribution of hemodynamic shear forces in regulating the expression of a few of the monocyte adhesion receptors, including intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), and E-selectin on endothelial cells. A parallel plate flow chamber and recirculating flow loop device was used to expose human umbilical vein endothelial cells (HUVECs) to different levels of shear (2-25 dyn/cm2). Subsequently the cells were analyzed either for shear induced changes in the mRNA levels of adhesion receptors by Northern blot analyses or for changes in the surface expression of ICAM-1 using flow cytometry. Results from the fluorescence analysis showed a transient increase in the surface expression of ICAM-1, 12 hr after exposure to 25 dyn/cm2 shear, returning to basal levels within 24 hr. This was quite different from the time dependent response of ICAM-1 to lipopolysaccharide (LPS), where ICAM-1 expression was maximally induced 18-24 hr post-stimulus. ICAM-1 mRNA level appeared slightly elevated after exposure to shear for 1 hr, compared to basal values, but dropped below basal levels within 6 hr. This biphasic response was seen irrespective of the magnitude of applied shear stress. VCAM-1 mRNA expression, in contrast, decreased below the baseline expression within an hour after onset of flow, and appeared to be considerably down-regulated within 6 hr. After exposure to shear for 24 hr, no increase in mRNA levels could be detected for either molecule, at any shear magnitude. E-selectin mRNA was less responsive to shear stress, especially at the lower magnitudes of shear. After an hour of exposure to flow E-selectin mRNA level appeared slightly reduced compared with control levels, but it remained at this level even after 6 hr of flow. These results indicate that the expression of adhesion receptors is sensitive to local shear stresses in a manner that is molecule specific in the short term even though prolonged exposure to flow results in similar down-regulation for both ICAM-1 and VCAM-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.