Abstract

Electrical conduction through meteoric polar ice is controlled by soluble impurities that originate mostly from sea salt, biomass burning, and volcanic eruptions. The strongest conductivity response is to acids, yet the mechanism causing this response has been unclear. Here we elucidate conduction mechanisms in ice using broadband dielectric spectroscopy of meteoric polar ice cores. We find that conduction through polycrystalline polar ice is consistent with Jaccard theory for migration of charged protonic point defects through single ice crystals, except that bulk DC conduction is impeded by grain boundaries. Neither our observations nor modeling using Archie's Law support the hypothesis that grain‐boundary networks of unfrozen acids cause significant electrolytic conduction. Common electrical logs of ice cores (by electrical conductivity measurement [ECM] or dielectric profiling [DEP]) and the attenuation of radio waves in ice sheets thus respond to protonic point defects only. This response implies that joint interpretation of electrical and chemical logs can determine impurity partitioning between the lattice and grain boundaries or inclusions. For example, in the Greenland Ice Core Project (GRIP) ice core from central Greenland, on average more than half of the available lattice‐soluble impurities (H+, Cl–, NH4+) create defects. Understanding this partitioning could help further resolve the nature of past changes in atmospheric chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call