Abstract
Abstract Contributions to the increased poleward moisture flux that characterized the second day of the 1–3 May Nashville, Tennessee, flood of 2010 are examined from the perspective of polar and subtropical jet superposition and its influence on the secondary ageostrophic circulation. Employing the Sawyer–Eliassen circulation equation, the analysis reveals that the poleward moisture flux attributed to the jet increased nearly 120% prior to the second day of the event in response to the superposed jet’s ageostrophic circulation, helping to further fuel the production of heavy rainfall. The full Sawyer–Eliassen circulation associated with the superposed jet is further partitioned into its geostrophic and diabatic components. The geostrophic forcing drove midtropospheric ascent that fueled the production of deep convection and the record rainfall. The diabatic component, through forcing lower-tropospheric ascent and vigorous lower-tropospheric poleward moisture flux, provided the link between the tropical moisture and the deep convective environment. Since superposed jets, by their nature, develop on the poleward edge of the tropical or subtropical air, it is suggested that such a mutually reinforcing interaction between these two component forcings of the secondary circulation may routinely characterize the involvement of superposed jet structures in high-impact weather events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.