Abstract

AbstractPresent work is devoted to the study of the tensile behavior of polypropylene (PP)/mica composites with improved interfacial interactions from the matrix side caused by the presence of a p‐phenylen‐bis‐maleamic acid grafted atactic polypropylene (aPP‐pPBM) as an interfacial agent. Hence, aPP‐pPBM was previously obtained, in our laboratories, by reactive processing in the melt of a by‐product (atactic PP) from industrial polymerization reactors. Present article is two‐fold, on one hand it has been planned to evidence the so called interfacial effects caused by this novel interfacial agent (aPP‐pPBM) yielding better final properties of the heterogeneous system as a whole as revealed by tensile mechanical properties, and on the other to obtain models to forecast the overall behavior of the system. For such purpose, a Box‐Wilson experimental design considering the amount of mica particles and of interfacial agent as independent variables was used to obtain polynomials to forecast the behavior of the PP/Mica system in the experimental space scanned. The existence of a critical amount of aPP‐pPBM to optimize mechanical properties appears to emerge. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call