Abstract

As a weak link between aggregate and mortar in concrete, interfacial transition zone (ITZ) usually plays a key role in concrete fracture. To investigate the tensile fracture property of concrete affected by the mechanical properties of ITZ numerically, the geometrical models of heterogeneous concrete were established with the parameterization modeling. They include three phases, namely, mortar, ITZ, and randomly distributed aggregates with distinct sizes and orientations. The cracking behaviors of mortar and ITZ were characterized by the bilinear cohesive zone constitutive model. Based on the experiments, the mechanical properties of ITZ were mediated by changing the water–cement ratio of mortar, the aggregate surface roughness and the content of silica fume in interfacial agent. A series of numerical simulations were conducted on the concrete models in tension after the numerical modeling method was validated. The macroscopic tensile fracture properties of concrete were quantitatively connected with some microscopic variables, including the water–cement ratio of mortar, the aggregate surface roughness and the silica fume content in interfacial agent. It was found that the tensile fracture properties of concrete have negative linear correlations with the water–cement ratio of mortar, while the effects of the aggregate surface roughness and the silica fume content in interfacial agent are very complex. The tensile fracture mechanical properties of concrete have a bilinear relationship with the aggregate surface roughness and an approximate quadratic parabola relationship with the content of silica fume in the interfacial agent. This study is beneficial to improve the fracture resistance of concrete by some interface handling measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.