Abstract

There is a considerable degree of ambiguity in the literature regarding the role of the 2',3'-cyclic phosphodiesters formed during the reaction of RNA cleavage catalysed by ribonuclease. Usually the reaction is considered to take place in two steps: in the first step there is a transphosphorylation of the RNA 3',5'-phosphodiester bond broken yielding a 2',3'-cyclic phosphodiester which in the second step is hydrolysed to a 3'-nucleotide. Although in many occasions, either explicitly or implicitly, the reaction is treated as taking place sequentially, this is not the case as it has been shown that the 2',3'-phosphodiesters are actually released to the medium as true products of the reaction and that no hydrolysis of these cyclic compounds takes place until all the susceptible 3',5'-phosphodiester bonds have been cyclised. Comparison of the hydrolysis and alcoholysis of the 2',3'-phosphodiesters catalysed by RNase A indicates that the hydrolysis reaction has to be considered formally as a special case of the transphosphorylation back reaction in which the R group of the R-OH substrate is just H. It is thus concluded that the 2',3'-cyclic phosphodiesters formed in the ribonuclease A reaction are true products of the transphosphorylation reaction and not intermediates as usually considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.