Abstract
State transitions are an acclimatory response by which plants, algae, and cyanobacteria counteract photosynthetic inefficiency caused by changes in incident light quality. In plants and green algae, state transition 7 (STN7/STT7) kinase promotes state 2 transition. Conserved cysteine residues are implicated in STN7/STT7 regulation, but the precise nature of their involvement remains unclear. Here, an analysis of the STN7 thiols in vitro and a determination of their midpoint redox potential indicate that the lumenal disulfide linkage is unlikely to be redox regulated while the stromal cysteines form a regulatory intramolecular disulfide. We further show that thioredoxin f1 (Trx-f1) reduces the STN7 stromal disulfide linkage as consistent with a Trx-f1-mediated inhibition of the kinase under high light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.