Abstract
Cell wall-polysaccharides play a crucial role in heavy metals binding, and hence, contribute to heavy metal detoxication in plants. However, there is no data regarding the molecular mechanisms of vanadium (V) binding to root cell walls in plants, especially in rice (Oryza sativa L.). Taking two rice cultivars with various V tolerance as the research material, the present study investigated the effect of various V concentrations on subcellular distribution of V and revealed the regulatory mechanism of cell wall polysaccharides to V exposure. The results showed that rice roots inhibited the upward movement of V, and root cell walls accumulated 69.85–82.71% of V in roots. Furthermore, hemicellulose-1 (HC-1) in cell walls shared up to 67.72% and 66.95% of the cell-wall-bound V in tolerant and sensitive cultivars, respectively. FTIR spectroscopy demonstrated that V stress induced the remolding of cell wall polysaccharides. Under V stress, V-tolerant rice generated up to 19.3% pectin, 40.9% HC-1, and 49.34% HC-2, which were higher than V-sensitive cultivar. The genes encoding UGDH, UGE, and AXS for polysaccharide biosynthesis were higher expressed in V-tolerant rice than V-sensitive rice when exposed to V. The results could provide novel insight for phytoremediation and food security guarantees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.