Abstract

Objective: To systematically summarize and assess risk prediction models for occurrence of cervical cancer and to provide evidence for selecting the most reliable model for practice, and guide cervical cancer screening. Methods: Two groups of keywords related to cervical cancer and risk prediction model were searched on Chinese databases (CNKI, and Wanfang) and English databases (PubMed, Embase, and Cochrane Library). Original articles that developed or validated risk prediction models and published before November 21, 2019, were selected. Information form was created based on the CHARMS checklist. The PROBAST was used to assess the risk of bias. Results: 12 eligible articles were identified, describing 15 prediction models, of which five were established in China. The predicted outcomes included multiple stages from cervical precancerous lesions to cancer occurrence, i.e., abnormal Pap smear (1), occurrence or recurrence of CIN (9), and occurrence of cervical cancer (5), etc. The most frequently used predictors were HPV infection (12), age (7), smoking (5), and education (5). There were two models using machine learning to develop models. In terms of model performance, the discrimination ranged from 0.53 to 0.87, while only two models assessed the calibration correctly. Only two models were externally validated in Taiwan of China, using people in different periods. All of the models were at high risk of bias, especially in the analysis domain. The problems were concentrated in the improper handling of missing data (13), preliminary evaluation of model performance (13), improper use of internal validation (12), and insufficient sample size (11). In addition, the problems of inconsistency measurements of predictors and outcomes (8) and the flawed report of the use of blindness for outcome measures (8) were also severe. Compared with the other models, the Rothberg (2018) model had relatively high quality. Conclusions: There are a certain number of cervical cancer risk prediction models, but the quality is poor. It is urgent to improve the measurement of predictors and outcomes, the statistical analysis details such as handling missing data and evaluation of model performance and externally validate existing models to better guide screening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call