Abstract

The control of moisture in the building sector represents a widespread issue and research topic, in terms of improving the quality of indoor space healthiness and energy performance. In Venice, rising damp and moisture phenomena are very diffused and difficult to solve, due to building structures and specific environmental conditions. All of the buildings and artefacts in the city are presently wall structures filled with bricks, which lean on relatively permeable soil, are exposed to an environment rich in saline aerosols, and are continuously lapped by floods and brackish water. The aim of this research was to analyze typical Venetian masonry walls affected by rising damp through the application of non-destructive methods, in order to understand and assess the behavior of construction materials in specific boundary conditions. The data given by non-destructive monitoring in mock-up masonries were compared with dynamic simulations to estimate the hygrothermal behavior and analyze the effect on different parameters, such as the physical properties of new and historical materials (i.e., density, thermal conductivity, etc.), the presence and type of plasters, and the kinds of traditional treatment applications. The evaluation of experimental data, supported by simulations provides to the literature an empirical comprehension of rising damp phenomena in real masonry toward careful heritage conservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.