Abstract

In this paper, a strain energy model is developed for the prediction of the effective coefficient of thermal expansion (CTE) of composite materials. This model is based on the relationship established between the strain energy of the microstructure and that of the homogenized equivalent model under specific thermo-elastic boundary conditions. Expressions in closed-form are derived for the effective CTE in terms of the strain energy and effective elastic tensor. Different kinds of composites are tested to validate the model. Representative unit cells with specific boundary conditions are used to evaluate effective CTEs that are compared with available results obtained numerically and experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.