Abstract

Deep learning is a machine learning technology that allows computational models to learn via experience, mimicking human cognitive processes. This method is critical in the development of identifying certain objects, and provides the computational intelligence required to identify multiple objects and distinguish it between object A or Object B. On the other hand, malware is defined as malicious software that seeks to harm or disrupt computers and systems. Its main categories include viruses, worms, Trojan horses, spyware, adware, and ransomware. Hence, many deep learning researchers apply deep learning in their malware studies. However, few articles still investigate deep learning and malware in a bibliometric approach (productivity, research area, institutions, authors, impact journals, and keyword analysis). Hence, this paper reports bibliometric analysis used to discover current and future trends and gain new insights into the relationship between deep learning and malware. This paper’s discoveries include: Deployment of deep learning to detect domain generation algorithm (DGA) attacks; Deployment of deep learning to detect malware in Internet of Things (IoT); The rise of adversarial learning and adversarial attack using deep learning; The emergence of Android malware in deep learning; The deployment of transfer learning in malware research; and active authors on deep learning and malware research, including Soman KP, Vinayakumar R, and Zhang Y.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.