Abstract
The mechanisms of viral diseases are a major focus of biology. Despite intensive investigations, how a plant virus interacts with host factors to cause diseases remains poorly understood. The Rice dwarf virus (RDV), a member of the genus Phytoreovirus, causes dwarfed growth phenotypes in infected rice (Oryza sativa) plants. The outer capsid protein P2 is essential during RDV infection of insects and thus influences transmission of RDV by the insect vector. However, its role during RDV infection within the rice host is unknown. By yeast two-hybrid and coimmunoprecipitation assays, we report that P2 of RDV interacts with ent-kaurene oxidases, which play a key role in the biosynthesis of plant growth hormones gibberellins, in infected plants. Furthermore, the expression of ent-kaurene oxidases was reduced in the infected plants. The level of endogenous GA1 (a major active gibberellin in rice vegetative tissues) in the RDV-infected plants was lower than that in healthy plants. Exogenous application of GA3 to RDV-infected rice plants restored the normal growth phenotypes. These results provide evidence that the P2 protein of RDV interferes with the function of a cellular factor, through direct physical interactions, that is important for the biosynthesis of a growth hormone leading to symptom expression. In addition, the interaction between P2 and rice ent-kaurene oxidase-like proteins may decrease phytoalexin biosynthesis and make plants more competent for virus replication. Moreover, P2 may provide a novel tool to investigate the regulation of GA metabolism for plant growth and development.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have