Abstract

The Ricci flow on the $2$-sphere with marked points is shown to converge in all three stable, semi-stable, and unstable cases. In the stable case, the flow was known to converge without any reparametrization, and a new proof of this fact is given. The semistable and unstable cases are new, and it is shown that the flow converges in the Gromov–Hausdorff topology to a limiting metric space which is also a $2$-sphere, but with different marked points and, hence, a different complex structure. The limiting metric is the unique conical constant curvature metric in the semi-stable case, and the unique conical shrinking gradient Ricci soliton metric in the unstable case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.