Abstract
Abstract In this work, we study metrics which are both homogeneous and Ricci soliton. If there exists a transitive solvable group of isometries on a Ricci soliton, we show that it is isometric to a solvsoliton. Moreover, unless the manifold is flat, it is necessarily simply-connected and diffeomorphic to ℝ n . In the general case, we prove that homogeneous Ricci solitons must be semi-algebraic Ricci solitons in the sense that they evolve under the Ricci flow by dilation and pullback by automorphisms of the isometry group. In the special case that there exists a transitive semi-simple group of isometries on a Ricci soliton, we show that such a space is in fact Einstein. In the compact case, we produce new proof that Ricci solitons are necessarily Einstein. Lastly, we characterize solvable Lie groups which admit Ricci soliton metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.