Abstract
Rho GTPases, such as cell division cycle 42 (Cdc42) and ras-related C3 botulinum toxin substrate 1 (Rac1), have been identified as regulators of F-actin dynamics and hormone release from endocrine cells; however, their role in secretion of the incretin hormone, glucagon-like peptide-1 (GLP-1), from the enteroendocrine L cell is unknown. Insulin induced a 1.4-fold increase in L cell GLP-1 release; however, secretion was potentiated to 2.1-fold in the presence of the F-actin depolymerizing agent, latrunculin B, suggesting that F-actin functions as a permissive barrier. In murine GLUTag L cells, insulin stimulated F-actin depolymerization and Cdc42 activation simultaneously, and these events occurred prior to detectable increases in insulin-induced GLP-1 release. After insulin treatment, Cdc42-dependent p21-activated kinase-1 (PAK1) activation was also detected, and transfection of small-interfering RNA against Cdc42 or of dominant-negative Cdc42(T17N) impaired insulin-stimulated PAK1 activation, actin remodeling, and GLP-1 secretion. Overexpression of kinase-dead PAK1(K299R) or PAK1 small interfering RNA similarly attenuated insulin-induced GLP-1 secretion. Knockdown or inhibition of Cdc42 and PAK1 activities also prevented activation of MAPK/ERK (MEK)-1/2-ERK1/2 by insulin, which was previously identified as a critical pathway for insulin-regulated GLP-1 release. Taken together, these data identify a novel signaling pathway in the endocrine L cell, whereby Cdc42 regulates actin remodeling, activation of the cannonical 1/2-ERK1/2 pathway and PAK1, and GLP-1 secretion in response to insulin.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have