Abstract
Screening for sensitive toxicological indicators and understanding algal tolerance to pharmaceutical contaminants (PhCs) are essential for assessing PhCs risk and their removal by microalgae. Carbamazepine (CBZ) showed adverse effects on microalgae, but the specific toxicity mechanisms on the most sensitive algal photosynthetic system (PS) remain limited. This study delved into the impact of CBZ exposure on the growth, cell viability, pigment content, and PS of Chlorella vulgaris. The findings revealed a notable inhibition of C. vulgaris growth by CBZ, with an IC50 value of 27.2 mg/L at 96 h. CBZ exposure induced algal membrane damage and cell viability. Intriguingly, CBZ drastically diminished intracellular pigment levels, notably showing "low promotion and high inhibition" of chlorophyll b (Chl b) by 72 h. Moreover, the study identified a decreased number of active reaction centers (RCs) within algal PSII alongside inhibited electron transport from QA to QB on the PSII receptor side, leading to PSII disruption. As an adaptive response to CBZ stress, C. vulgaris stimulated its Chl b synthesis, increased non-photochemical quenching (NPQ), and adapted its tolerance to bright light. Additionally, the alga attempted to compensate for the CBZ-induced reduction in electron transfer efficiency at the PSII receptor side and light energy utilization by increasing its electron transfer from downstream. Principal component analysis (PCA) further verified that the parameters on non-photochemical dissipation, electron transport, and integrative performance were the most sensitive algal toxicological indicators for CBZ exposure, and algal PS has energy protection capability through negative feedback regulation. However, prolonged exposure to high doses of CBZ will eventually result in permanent damage to the algal PS. Hence, attention should be paid to the concentration of CBZ in the effluent and the exposure time, while methods to mitigate algal photodamage should be appropriately sought for algal treatment of dense effluents.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have