Abstract

An incubation experiment was conducted to investigate the response of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and the nitrification rate to the contamination of Cu, Zn, and Cd in two New Zealand grassland soils. The soils spiked with different concentrations of Cu (20 and 50mgkg-1), Zn (20 and 50mgkg-1), and Cd (2 and 10mgkg-1) were incubated for 14days and then treated with 500mgkg-1 urine-N before continuing incubation for a total of 115days. Soils were sampled at intervals throughout the incubation. The nitrification rate in soils at each sampling period was determined, and the abundance of AOB and AOA was measured by real-time quantification polymerase chain reaction (qPCR) assay of the amoA gene copy numbers. The results revealed that moderate trace metal stress did not significantly affect the abundance of AOB and AOA in the two soils, probably due to the high organic matter content of the soils which would have reduced the toxic effect of the metals. Nitrification rates were much greater and the observable nitrification period was much shorter in the dairy farm (DF) soil, in which the AOB and AOA abundances were greater than those of the mixed cropping farm (MF) soil. AOB were shown to grow under high nitrogen conditions, whereas AOA were shown to grow under low N environments, with different metal concentrations. Therefore, nitrogen status rather than metal applications was the main determining factor for AOB and AOA growth in the two soils studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call