Abstract

As the demand and import of liquefied natural gas (LNG) increase, large LNG receiving stations are being constructed. LNG leakage can lead to fire or explosion accidents. The simultaneous occurrence of explosions and fires, often inevitable, is more damaging than the effect of a single load. This study utilizes finite element analysis software LS-DYNA and the ALE algorithm to examine the response characteristics and damage effects on large LNG storage tanks under the combined impact of explosion shock waves and high-temperature loads (with the explosion preceding the fire). The findings indicate that post-explosion, the concrete outer tank's compressive strength diminishes as temperatures rise. The dome deflection of the storage tank's external tank surpasses the standard limit at 400 °C and fails at 600 °C. This research identifies the critical failure mode of the concrete storage tank's outer tank under the joint impact of explosion shock waves and fire. It provides a foundation for the anti-explosion design of such storage tanks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call