Abstract
Sterols perform essential structural and signalling functions in living organisms. Ergosterol contributes to the fluidity, permeability, microdomain formation and functionality of proteins in the yeast membrane. In our study, desmosterol was the most successful at compensating for the lack of ergosterol in Saccharomyces cerevisiae, besides stigmasterol and sitosterol. These three sterols supported cell growth without causing severe morphological defects, unlike cholesterol, 7-dehydrocholesterol, lathosterol, cholestanol or lanosterol. Together with ergosterol, they were also able to bring the plasma membrane potential of hem1Δ cells closer to the level of the wild type. In addition, desmosterol conferred even higher thermotolerance to yeast than ergosterol. Some sterols counteracted the antifungal toxicity of polyenes, azoles and terbinafine to hem1Δ cells. Plant sterols (stigmasterol, sitosterol) and desmosterol ensured the glucose-induced activation of H+-ATPase in hem1Δ cells analogously to ergosterol, whereas cholesterol and 7-dehydrocholesterol were less effective. Exogenous ergosterol, stigmasterol, sitosterol, desmosterol and cholesterol also improved the growth of Candida glabrata and Candida albicans in the presence of inhibitory concentration of fluconazole. The proper incorporation of exogenous sterols into the membrane with minimal adverse side effects on membrane functions was mainly influenced by the structure of the sterol acyl chain, and less by their ring structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.