Abstract

In this work, a three-dimensional bioelectrochemical reactor system (3D-BERs) with granular activated carbon (GAC) was utilized to study the feasibility of simultaneous removal of nitrates by autotrophic-heterotrophic denitrification process under different pH levels. In this present study, it was found that when the influent COD/ NO3--N ratio ranged between 1.5 and 3.5, both autotrophic and heterotrophic denitrifying microorganisms played an important role in denitrification. The experimental results demonstrated that the highest removal efficiency of nitrates under the optimum COD/NO3--N ratio of 1.5 (98.62%) was achieved with an initial pH of 7.5 ± 0.4. Likewise, when the COD/NO3--N ratio of 3.5, the nitrates removal efficiency (81.12%) was achieved with an initial pH of 8.2 ± 0.3, respectively. Batch denitrification processes followed zero-order kinetics at various NO3--N concentrations obtained. The bacterial community structure and relative abundance of bacteria changed at the level of genes and the phylum of immobilized GAC particles. Moreover, the diversity of bacterial composition enhanced the removal of NO3--N at the inner surface (IS), and bottom surface (BS) of immobilized GAC carriers were Gammaproteobacteria, Bacilli, Proteobacteria, and Thauera. In general, this technique is more effective for enhancing the denitrification process in the 3D-BER system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.