Abstract

NO x sorption and reduction capacities of 12-tungstophosphoric acid hexahydrate (H 3PW 12O 40·6H 2O, HPW) were measured under representative alternating conditions of lean and rich exhaust-type gas mixture. Under lean conditions, the sorption of NO x is large and is equivalent to 37 mg of NO x /g HPW. Although a part of these NO x remains unreduced, HPW is able to reduce some of the NO x to produce N 2 by a reaction between the sorbed NO 2 and hydrocarbon (HC), but this process is slow. The addition of 1% Pt affects strongly the chemical behaviour occurring during the course of a rich operation. The NO desorption observed at the beginning of the rich phase is strongly accelerated. The direct correlation between NO 2 consumption and CO 2 production shows that the principal pathway is the reaction CO+NO 2→CO 2+NO. In a mixture of reducing gas (CO, HC, H 2), the competition is strongly in favour of CO though in its absence the reaction observed was the hydrogenation of propene to propane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.