Abstract

Abstract The problem of retrieving cirrus cloud optical depth from radiance measurements made by instruments aboard operational meteorological satellites is addressed. A method is proposed that exploits the relationship between observed differences in the near infrared (NIR) and infrared (IR) window radiances (expressed in terms of brightness temperature differences ΔT) and the optical depth of the cloud. The approach designed to test this method relies on the simultaneous collection of ground-based lidar and infrared radiometric (LIRAD) data, radiosonde data and bispectral satellite images. Two case studies are described for which independent estimates of satellite pixel and coincident time-averaged LIRAD optical depths are compared with radiative transfer calculations made for hypothetical clouds characterized by distributions of spherical ice particles. Such comparative analyses yield information about cloud microphysics and enable the selection of representative theoretical relationships between estim...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.