Abstract

BackgroundThe purpose of this study was to determine the reliability of a forceplate postural balance protocol in a group of elderly fallers and non-fallers. The measurements were tested in single and dual-task conditions, with and without vision.Methods37 elderly (mean age 73 ± 6 years) community-dwellers were included in this study. All were tested in a single (two-legged stance) and in a dual-task (two-legged stance while counting backwards aloud in steps of 7's) condition, with and without vision. A forceplate was used for registering postural variables: the maximal and the root-mean-square amplitude in medio-lateral (Max-ML, RMS-ML) and antero-posterior (Max-AP, RMS-AP) direction, mean velocity (MV), and the area of the 95% confidence ellipse (AoE). Reliability of the test protocol was expressed with intraclass correlation coefficients (ICC), with 95% limits of agreement (LoA), and with the smallest detectable difference (SDD).ResultsThe ICCs for inter-rater reliability and test-retest reliability of the balance variables were r = 0.70–0.89. For the variables Max-AP and RMS-AP the ICCs were r = 0.52–0.74. The SDD values were for variable Max-ML and Max-AP between 0.37 cm and 0.83 cm, for MV between 0.48 cm/s and 1.2 cm/s and for AoE between 1.48 cm2 and 3.75 cm2. The LoA analysis by Bland-Altman plots showed no systematic differences between test-retest measurements.ConclusionThe study showed good reliability results for group assessment and no systematic errors of the measurement protocol in measuring postural balance in the elderly in a single-task and dual-task condition.

Highlights

  • The purpose of this study was to determine the reliability of a forceplate postural balance protocol in a group of elderly fallers and non-fallers

  • The employed force platform indirectly detects changes of postural sway by assessing the ground-reaction forces. These ground-reaction forces are used to calculate the centre of pressure (COP), which reflects the trajectory of the centre of mass and the torque acting on the surface [10]

  • Various balance variables can be derived from the COP movement, e.g. the root mean square (RMS) of COP amplitudes in anterior-posterior and medio-lateral direction or the maximum COP displacement in anterior-posterior and medio-lateral direction [11,12,13,14,15]

Read more

Summary

Introduction

The purpose of this study was to determine the reliability of a forceplate postural balance protocol in a group of elderly fallers and non-fallers. Tests for postural control with functional balance scales are easy to perform and are suitable for daily clinical use they often lack accuracy. Quantitative posturography is a frequently used technique for measuring postural control [9]. The employed force platform indirectly detects changes of postural sway by assessing the ground-reaction forces. These ground-reaction forces are used to calculate the centre of pressure (COP), which reflects the trajectory of the centre of mass and the torque acting on the surface [10]. In spite of the frequent use of these measures only a small number of studies have reported on the reliability of postural balance measures [12,13,15,16,17]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.